A microscopic derivation of Gibbs measures for the 1D focusing cubic nonlinear Schrödinger equation Quantissima 2022

Andrew Rout (joint work with Vedran Sohinger)

University of Warwick

August 16, 2022

Nonlinear Schrödinger Equation

• We will consider the following form of the NLS

$$\begin{cases} i\partial_t \varphi = (-\Delta + \kappa)\varphi + (w * |\varphi|^2)(x)\varphi(x) \\ \varphi_0 \in H^s(\mathbb{T}), \end{cases}$$

where we take $(x,t) \in (\mathbb{T},\mathbb{R})$.

$$H^{s}(\mathbb{T}) := \{ f : (1+|k|^{2})^{s/2} \hat{f}(k) \in \ell^{2}(\mathbb{Z}) \}.$$

- Throughout this talk, we will take
 - $w \in L^1(\mathbb{T}; \mathbb{R})$ to be even with no positivity assumptions on w or \hat{w} : focusing Hartree equation
 - 2 $w = -\delta$: focusing local NLS
- We have two invariant quantities associated with the NLS:

$$\begin{split} M(\varphi) &:= \int dx \, |\varphi(x)|^2, \\ H(\varphi) &:= \underbrace{\int dx \, |\nabla\varphi(x)|^2 + \kappa |\varphi(x)|^2}_{H_0} + \underbrace{\frac{1}{2} \int dx \, dy \, |\varphi(x)|^2 w(x-y) |\varphi(y)|^2}_{\mathcal{W}}. \end{split}$$

Gibbs Measures

• We consider a Gibbs measure defined heuristically as

$$d\mathbb{P}_{Gibbs} := \frac{1}{z} e^{-H(\varphi)} d\varphi.$$

 $\bullet\,$ For a positive, even L^1 interaction potential, we can write this as

$$\frac{1}{z}e^{-\mathcal{W}}d\mu,$$

where $d\mu$ is the *Wiener measure*.

• A function in the support of $d\mu$ is given by the random Fourier series

$$\varphi^{\omega}(x) \equiv \varphi(x) = \sum_{k \in \mathbb{N}} \frac{g_k(\omega)}{\sqrt{\lambda_k}} e^{2\pi i k x},$$

with g_k gaussian i.i.d. random variables. This is in $H^{1/2-\varepsilon}$ for any $\varepsilon > 0$.

- Gibbs measure is invariant under the flow and for any function in its support, NLS is GWP (Bourgain '94).
- For a negative interaction potential, we introduce a truncation in the mass.
 Let f ∈ C₀[∞](ℝ). Then we consider

$$d\mathbb{P}^f_{Gibbs} := \frac{1}{z} e^{-\mathcal{W}} f(\|\varphi\|_{L^2}^2) d\mu.$$

Many-Body Framework

• Work with n-identical bosons – so we need wavefunctions $u \in L^2(\mathbb{R}^n)$ satisfying

$$u(x_1,\ldots,x_n)=u(x_{\pi(1)},\ldots,x_{\pi(n)})$$

for any $\pi \in S_n$. Let $\mathfrak{h} := L^2(\mathbb{T}; \mathbb{C})$.

- Denote by $\mathfrak{h}^{(p)}$ the symmetric subspace of \mathfrak{h}^{\otimes_p} *p*-body bosonic space.
- Given a mass m > 0 and a coupling constant coupling constant $\lambda > 0$, the *n*-body Hamiltonian is defined as

$$H^{(n)} := \frac{1}{m} \sum_{i=1}^{n} (-\Delta_i + \kappa) + \lambda \sum_{i < j=1}^{n} w(x_i - x_j).$$

• Writing au = m and $\lambda = \frac{1}{ au^2}$, we have

$$H_{\tau}^{(n)} = \frac{1}{\tau} \sum_{i=1}^{n} (-\Delta_i + \kappa) + \frac{1}{\tau^2} \sum_{i < j=1}^{n} w(x_i - x_j).$$

Correlation Functions

• The grand canonical ensemble is given by the sequence $(\rho_{\tau,n})_n$

$$\rho_{\tau,n} := \frac{1}{Z_{\tau}} e^{-H_{\tau}^{(n)}} f\left(\frac{n}{\tau}\right), \quad Z_{\tau} := \sum_{n \in \mathbb{N}} \operatorname{Tr}_{\mathfrak{h}^{(n)}} e^{-H_{\tau}^{(n)}} f\left(\frac{n}{\tau}\right),$$
$$Z_{\tau,0} := \sum_{n \in \mathbb{N}} \operatorname{Tr}_{\mathfrak{h}^{(n)}} e^{-H_{\tau,0}^{(n)}} f\left(\frac{n}{\tau}\right),$$

where $H_{\tau,0}^{(n)}$ corresponds to taking w = 0.

For p ∈ N, we define the p-particle reduced density matrix γ_{τ,p} via its operator kernel

$$\gamma_{\tau,p} := \sum_{n \ge p} \frac{p!}{(n-p)!} \operatorname{Tr}_{p+1,\dots,n}(\rho_n)$$

• Given a random variable $X = X(\omega)$, define the *classical Gibbs state* as

$$\rho(X) := \frac{\int d\mu \, X e^{-\mathcal{W}} f(\|\varphi\|_{L^2}^2)}{\int d\mu \, e^{-\mathcal{W}}} = \mathbb{E}_{\mathbb{P}_{Gibbs}}(X).$$

Result

• We define the *classical p-particle correlation functions* through its integral kernel

$$(\gamma_p) := \rho(\overline{\varphi}(y_1) \dots \overline{\varphi}(y_p)\varphi(x_1) \dots \varphi(x_p)).$$

 $\rightarrow \mathbb{P}_{Gibbs}$ is completely determined by $(\gamma_p)_p$.

Theorem (R-Sohinger '22)

Let $w \in L^{\infty}$ be real valued and even. Given $p \in \{1, 2, \ldots\}$, we have

$$\lim_{\tau \to \infty} \|\gamma_{\tau,p} - \gamma_p\|_{L^1} \to 0.$$

Moreover

$$\lim_{t \to \infty} \frac{Z_{\tau}}{Z_{\tau,0}} = z.$$

• We can generalise this result to L^1 potentials and the negative δ function.

Placing the Result in the Literature

- Although this is the first known result for focusing interactions, the problem is well studied for defocusing regimes:
 - **Lewin-Nam-Rougerie** ('15) 1D results using variational method. Non-translation invariant interaction in d = 2, 3.
 - **Fröhlich-Knowles-Schlein-Sohinger ('17)** Bounded potentials in d = 1, 2 with modified Gibbs state. New proof of d = 1.
 - **Sohinger ('19)** Extension of above results to optimal $w \in L^q$.
 - **L-N-R ('18)** 1D non-periodic subharmonic trapping potential.
 - **L-N-R** ('18) 2D smooth interaction without modified Gibbs state.
 - **()** L-N-R ('20) Extension to d = 3.
 - **F-K-S-S** ('18) time-dependent problem for 1D.
 - **§** F-K-S-S ('22) ϕ_2^4 Euclidean field theory for potential with contracting range.